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The asymptotic method of [l-4] is used to derive two-dimensional dynamical equations for a plate made up 

of N anisotropic layers with planes of elastic symmetry parallel to the faces. It is shown that, unlike the case 

of isotropically layered plates [4], these equations do not reduce to the equations for an equivalent 

monoplate and Kirchhoff’s first hypothesis is inapplicable. The full stress tensor, including asymptotically 

small components, is determined, as are the integral characteristics of the assembly. The general cases of 

separation of the problems of bending and longitudinal tension-compression-shearing are analysed, and 

some particular anisotropic structures are considered. It is proposed to solve static problems by 

representing the unknown functions as functions of a complex variable. 

1. CONSIDER a layered plate consisting of N anisotropic linearly elastic layers, perfectly bonded 
together along horizontal planes of contact and such that there is a horizontal plane of elastic 
symmetry at each point. This will be the case, for example, in a plate formed by stacking 
unidirectional composites with rotated horizontal principal axes. The positions of the layers are 
represented by the Cartesian coordinates 

Xl* X,ESQCCRZ, ZjGXB=ZGZj+r (j=1,2,...,N) 

Let Hj = Zj+l - Zj be the thickness of the jth layer, pj its density, Gj its stiffness matrix, Ho, ~0, Eo, 
*‘2 co = Wo/Po) 7 To are the half-thickness and characteristic density, modulus of elasticity, velocity 

and duration of dynamical processes, respectively, for the entire assembly. Assuming that the 
variability of the stress-strain state in the longitudinal direction is determined by a minimal 
characteristic dimension Lo (depending on the external forces and the geometry of the plate), we 
shall always use dimensionless variables, displacements, stresses and stiffness matrix 

61. x2) = 

(X19 X2) Z T 

Lo 

9 z= -, 

Ho 

t=-.--, g=c 

To Eo 

U I: W-J (U,W)=(u~,U2,W)= -g oup= - 
0 Eo 

A superscript i, wherever necessary, will denote the number of the layer. The external loads are 
concentrated on the exposed faces of the plate 

u3 = o7(x1, x2, t). 7~((1,3,u23)=77(X,.X2,f) (1.1) 

(zT =z1r zr$r+1) 

and are functions varying at a fairly slow rate. The displacements and stresses are continuous across 
the interfaces 
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& = Ji 1 ) (II, w)’ = (u, w)‘-1, z=zi, jz2.3,. ,N (1.2) 

We shall treat the quotient E = Ho/Lo as a small parameter, To = E~‘&,/c~ (later we shall 
consider the case 7 = 0); the ratios of the layer thicknesses, stiffnesses and densities do not form new 
small (or large) parameters. 

The three-dimensional dynamical elastic equations for each layer may be written as follows: 

+v + d,M3u t e2N3w - p(pog33)-‘a;w = 0 (I .3) 
a;K,u +d,MIW + E*&U -~(~,&&‘a;u, = o (1 + 2) 

gd3 =il l(gb +gss)al +(g4, +g36)a2 1 ‘i2 i(g4, +g36)al %23 t,g44)a21 

g33N3 =gd: +%4SG2 + g4,a; 

gssb =gssh +g4si2. &Ml =k,3 + &da1 +k4S +&?36ja2 

&?s& =il ha; +2g16a;2 +g66a; f ‘i2 ig16a; %I2 +g66)a:2 +g26a: t 

TO solve this system of equations, we expand the unknown functions in asymptotic series in powers 
of P [l, 2, 51 in each layer (S = 0, 1,2, . . .) 

u = $+I &Ju(S), w = E”z:Esw(s) (I .4) 

thereby obtaining the equations for the components of the displacements 

a*&) + a,MaU(S-2)+ ~~~(s-2) _ p(pog3,)-* a;w(s-4+*T) = 0 z 

a; Klu(S) t a&l W(‘) + NIUcS-*) - p(p,,g, s)-’ afUp-4+2T) = 0 

(1.5) 

2. Integrating system (1.5) for s = 0, 1 and assuming that r<2, we obtain expansions of the 
s-components in terms of the variable .z 

w(s) = WV’ + zw?, u(s) = @ + zu(;s) + z*/2u(;s) 

2Kgu(io = -Mpwl”), &)=ga3wy) ((w= 1,2,3; fl= 1,2) a! (2.1) 

upj = g4s[u21 + a2w0P +gss[ull +a,w,i(S)+2z[g4sU22 +gs,u12P (1 -2) 

$2’ = 

1 

g3 6 WI.‘? g36 #O 

(g16al + g66a2)uis) + (g66al + g26a2)&! g36 =O 

In view of the necessary independence of the stresses a, and conditions (1.2), we conclude that, 
irrespective of the layer index j, 

u(l)= u(o) - zgrad w,, , (3) (Jp$j=wp=Jp-J 

and also 

&A= O, 
( 

gl, # o 

[idg16al + 866a2)ti2(g66al + &?26a2)]j(% -zwdwo)(S). g/6 =o 

The functions on the right of these equalities depend only on xl , x2, t. In general, for expansions 
of the s-components in powers of z, that is, 

z k ,,W 
k=O 

k , w(S) = c” zkW$d, K = $1 
k=O 

we have the following recurrence relations in each layer 

@+2)&t I)wfj2 t (k t l)M3uf+;*) tN3wf-*) - p(p,,g33)-1 a; w(ks-4+27) = 0 (2.2) 

(kt2)(k+ l)K1~~~2+(ktl)M1~~~1 tN~u~-2)-~(p~g,~)-1a~u~~4’2T)=0 (1 -2) 
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3. In our analysis of the components with indices s + 2 = 2,3 and their subsequent values, we take 
r = 0 (T- L&,e and the frequency in the harmonic problem is o. - 2rrcoelLo). We are thus not 
considering the version of the quasistatic equations for all the displacements, or the appearance in 
all equations of inertial terms (7~0, when short waves are excited and the condition EG 1 is 
violated). We will confine ourselves to the classical Kirchhoff-Love long-wave theory of plates. The 
recurrence relations (2.2) imply that in each layer 

2w(s+*) = L~$), 6&u?+*) = (Nograd - MpLz) wt’ 

2K;uy+*) = -Jfpw$s+*) - Np@, &+*) = 0 

Lz = Magrad - N3 = L1 grad 

g,,L1 =i,(g13& +g36~2)+i*(g36~1 + g23a2) 

(3.1) 

Since the boundary conditions (1.1) are arbitrary, it remains to require that 

uSs,f2) = 0. @+*) = -L&, 2Kput+*) = [MpL, _ Np]ut) (3.2) 

Let us determine the structure of the other stresses. By Hooke’s law and (3.1) and (3.2), we 
obtain 

(3.3) 

d(Y,&Eii(Yi6ai + 766a2) ti2(*166al +Y26a2), Ypq -&Yp4 -gp3&T3q/&T33 

defining cr&‘+‘) using a different procedure. Indeed, since the surface load is independent of 
thickness and the contact stresses (1.1) and (1.2) are equal across the layer interfaces, it follows that 

(i, s+*) - 
%30 

- _L j(T;+,)6;+s+3 t (2 - !z ] K (zk 
2 I F 

n+1 - s+*) _ 

n=l j+l =I 

The leading components &i*) are 

u{“~~*’ = aluP), a(“J’2*) = l%b,wt) (1 “2) 

ai(-rP4)=gs5(MiLI -NI)-III-i. bi =-algrad, Ii =gssai + g,,% 

and after these are substituted into (3.4), we obtain the final expressions for the stresses and a 
compatible quasi-static system of equations for the longitudinal and transverse stresses. 

Since &+*) = 0 for s = 0,l and the surface load is independent of E, it is natural to set A = -4 and 
to check the expansions corresponding to indices s + 4 = 4,5. In the relations analogous to (3.4) for 
the normal stresses, we must make the following substitutions: rP for U, go3 for a3 and K for K - 1, 
and take the Kronecker delta $+,+,. Following Hooke’s law and taking the recurrence relations 
(2.2) into account, we determine (for all sk0, k>O) the leading components of the normal stresses 
in each layer 

(s+4) = !_ p 
‘3k 

i 

_ a; w(s+*T) _ &#+2) k_ I 

k PO 1 

Substituting these equalities, we obtain an expression for o’$*‘+~) and a third mixed equation for 
the normal and longitudinal displacements. Omitting the cumbersome algebra and the simplifica- 
tions of double sums, we present the final result 
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(3.5) 

.&I;, [h, _ z:‘12-~_]a~uo + [ zi+y - z~+;-z” ]bfWo} ( 
(S) 

- 

_ (z - zi’y z3 
------ a*uo 2 

i 6) _ [_._ _ z@jY2 + 
6 2 

L$&!w6’) 

p,a~w$f) + A,$) + B,wg) = (u+ - u-) 6: + div(z+r’ - Z-T-) 8: 

A,& + Ba w’d’” = (rp’ - @) S; 

a. s a,ar + a2a2 = -i,br - izb2, b, z albl + azbz = -a,grad 

Ap z a~@,,), Bs z b,s@,), A, z a, @&), B. 3 be @&) 

.lJ (n= 1,2,3; pq= Il, 12,22,16,66,26) 

(3.6) 

(3.7) 

N hii+ 
p*= ;r: - 

i=1 PO 

Expressions (3.5) and (3.3) are the first two terms of the asymptotic expansions of a11 the 
components of the stress tensor; a compatible system of equations for the displacements is given by 
(3.6) and (3.7); it is accurate to within terms O(8). 

4. We will now indicate the orders of the main (dimensional) physical quantities that correspond 
to the above choice of asymptotic expansions. Their behaviour as E-+ +0 is similar to the case of a 
homogeneous plate [l]. They all have the form 

V=MeP {u(O) +d’) + U(2)] 

where Y = 0 corresponds to the problem of the bending of the plate by a normal load and r = 1 
corresponds to the reaction of the plate to a tangential load. The values M = Lo and p = -3, 
p = -2 are obtained for the transverse and longitudinal displacements, M = E. and p = -2 for 
stresses ar/3 = 11, 12,22 and p = - 1, p = 0 for cup = 13,23 and ~$3 = 33 (second-degree stresses are 
not determined in hypothetical plate theories). 

Considering the bending moments m,, (M = &L$) and the linear and transverse forces qaB , qp3 
(M = &Lo) obtained by integrating the stresses over the plate cross section as a whole, we see that 
the dimensional quantities are smaller than the stresses by two and one orders of magnitude, 
respectively. The expressions for the bending moments and linear forces are analogous to (3.31, 
except that the arguments 

2 
y 4, .zypq of the operators are replaced by the membrane-flexural and 

flexural strffnesses DP4, 
stiffnesses L&, 

Ll$, for the moments or by the membrane and membrane-flexura1 
L$, for the forces. Expressions for the transverse forces are determined by the 

equality 

483 @+*I = -a@&) up) - bfl@,} wt) + (2”~; - z-7;) Sj 

and satisfy the “coupling” equations 
(lp3+2) zz Ia,m, + a,m,,I (S+2)f(z+rf-%--7;)~f (102) 
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The fundamental equations (3.6), written in terms of forces and moments, are the same as the 
classical equations of the Kirchhoff-Love theory. In statics 

I adI + adI I (s+%(7;- 7;) s:=o (1*2) 

laiQIJ +a2~23~(~+z)+(~+-~-)8~=o 

( a;m, + 2af2ml z t aim, 1 (s+2) t div(z+r’ - z-r-) Sj t (o+ -a-) 6: = 0 

5. All the preceding arguments were phrased for an arbitrary position of the origin along the 
vertical; they yield consistent equations for the linear and transverse displacements. We will now 
analyse the possibility of a special choice of system of coordinates and separation of the problems. 
To that end we will need the complete expressions for the fundamental operators 

Al =-i,(o:ra: +2&af2 to&a:)-i2(D:aaf +(of2 +&)a:, +o:,a:) 

B, =@,a: +30:,a:a, +(o:, +2&)a,a: +#,a; (1~*2) 
(5.1) 

Generally speaking, none of the terms in (5.1) will vanish and the proportions among them may 
be arbitrary. That is the situation, for example, in the most-general anisotropic conditions or in the 
case of asymmetrically assembled orthotropic layers or crosswise stacking. We have thus obtained 
rather contradictory conditions for eliminating the operators Br , B2 and A from Eqs (3.6), and the 
following proposition holds. 

Proposition 1. The problems of bending and linear tension-compression-shearing are not 
separable for an assembly of N anisotropic layers, arbitrarily stacked with respect to their thickness. 
Hence it is impossible to indicate an equivalent anisotropic monoplate with the average characteris- 
tics of the layers, as has been done for isotropically elastic layers [4].7 

The physical reason for the interconnections among the problems is that the strains 

cy1) = a&J,)- za$f), E?] = s(aluo2 + a2uol - 2za:2wo)(s) (1 f, 2) 

may turn out to be non-zero for any position of the longitudinal plane x1 x2, so that Kirchhoff’s first 
hypothesis is violated. 

If the layers are symmetrically arranged, it is natural to put z = 0 in the middle plane. Then the 
sum Ej($+1- .z_f) Fj will vanish for any symbols Fj independent of the vertical coordinates. The 
membrane-flexural stiffnesses must be eliminated in Eqs (3.6) and in the expressions for the forces 
and moments; this automatically isolates the problem of bending for an assembly with undeform- 
able middle plane. 

Proposition 2. The behaviour of an assembly of N = 2n + 1 layers, symmetrically placed with 
respect to their thickness, is similar to that of an anisotropic monoplate with an undeformable 
middle plate. 

We emphasize that, unlike the situation in the hypothetical construction of equations, we are 
defining the complete stress tensor, including asymptotically small components, which may be used 
to analyse internal stresses, the strength of adherence of the layers, and so on . 

We will now consider an intermediate situation. A natural test of when the problems are 
interconnected is the function 

Qz,)= lItBill +lIB211z1 ‘= 

which has the property that F*(.q,) is a quadratic polynomial. The vertical position of the origin is 
chosen subject to the condition 

z, =z-: [=F (z -) = minF(z) 

t See also SIMONOV I. V., Dynamical equations of the bending of thin elastic plates which are degenerately 

inhomogeneous with respect to thickness. Preprint No. 468, Inst. Problem Mekh., Akad. Nauk SSSR, 1990. 
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Proposition 3. If 6G 1, the problems of bending and linear tension-compression-shearing of a 
layered assembly may be separated step by step in the following iterative procedure 

Do@ = I+), Dov:;, = -D, y:), II Do II, II D1 /I = O(1) 

v=(u,u,w)7, y=(w,w,u)I, @= 5 tn-l$) 
n=1 

where R(“) is the vector of loads in Eqs (3.6), Do is the operator corresponding to the separate 
problems of bending and generalized plane-stress state, and DI is the operator with membrane- 
flexural components 

D,,=(Ag.Az, B, +~.a:)‘, DI =t-‘(B~,Bz,b)~ 

An exact determination of the radius of convergence of the series in 5 requires a further analysis 
of the specific boundary conditions, but it is quite obvious that for sufficiently small values of 5, the 

iteration procedure will converge in any reasonably chosen norm. 

The case 5 = 0 exhausts all combinations of the parameters that admit of complete separation of 
the problems. 

We will consider some of these special anisotropic structures. 

Proposition 4. Consider a composite beam made up of orthotropic layers with principal axes in the x1, x2, x3 
directions, loaded along the x2 axis. Then the problem may be separated if one chooses 

1 
z, =- - ; h.H+, , 

j-1 

2D:, i=l ’ J 
Hi*=hi+2 Z h, (5.2) 

n=1 

The mean stiffnesses, Young’s modulus and Poisson’s ratios for bending and tension-compression-shear for 
this choice of parameter are 

v:=D:,fD:,, e”, = J/~D~, [l - (v~)‘] (5.3) 

v:=D:,tD:,, ek = SD: I [ 1 - (v:)’ ] 

yi, = I el I 
\ 1 -w*Jj 

ri, = 4, 41 

so that one obtains an analogous isotropic monobeam. There is a slight difference, in that the secondary linear 
forces and/or bending moments in the reduced middle plane need not vanish 

qsJ+2) = @; , a,@,) _ 0; 2 +,#) 0 ’ ,,,(ls+*) = D’ a UC’) _ v”.D;, a; ,+,p) 11 1 01 

and in this sense the middle plane is not neutral. 

Proposition 5. If the layers are transversally isotropic (z being the common axis of anisotropy), then a 
separate formulation of the problem is also obtained if one chooses the reduced middle plane in accordance 
with formula (5.2). 

Indeed, assuming that e and Y are the normalized Young’s moduli and Poisson’s ratios in the plane of 
isotropy, we see that in each layer 

e 
apdiv - 

e 
afl= - 2(1 - v) 

-ipA, 
2(1 +v) 

bp=y”fJA 

a, = -_rAdiv, b, ‘yA’ (A E 3: + 3:) 

e 

and separated equations may then be derived from (3.6). The expressions for the moments and forces in the 
plate cross section are also considerably simpler, and the values of the mean Young’s moduli and Poisson’s 
ratios are determined from (5.3). 

These results agree with those obtained for isotropically layered plates (see the paper cited in the previous 
footnote), so that all cases considered in this paper in which the layer parameters are asymptotically degenerate 
may be generalized naturally to structures with transversal isotropy. 
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6. To solve static problems for an asymmetric assembly, one can introduce a displacement 
potential and thus make use of the theory of functions of a complex variable, which has been 
developed for the case of an anisotropic monoplate [7]. Suppose we have a particular solution of the 
problem, corresponding to specific loads in Eqs (3.6). We seek coupled non-degenerate 
homogeneous solutions in the following form (omitting the index s) 

u = Re[u*q’(fixi + ~zG)], w= Re[u;q(fixl + 52x2)1 (6.1) 

where uz, tJp are complex constants and the function cp is differentiated globally with respect to its 
argument (we may assume without loss of generality that c1 = 1, lz = 5, U$ = 1). Then Eqs (3.6) are 
identically satisfied if C is a root of the (eighth-order) characteristic equation, and the constants ur, 
u$ may be determined from the linear system 

p*(tl.t2)=‘33po + Pll p:3 +p22p:3 + 2p,,p23p31 =o (6.2) 

~‘=a P=IlpapII, p*=detR p0~p11p22 -pi2 

The polynomials pap are given by 

Pll =-D:,S: - 2@,551t2 -%,S:, ~12 = -D:,t: -CD:2 +&ci)t,t2 -D:& 

~13 =D:,S: +3D:&:C; +<D:2 +2&)M: +D:& ~31 =-~13 (1 -2) 

~33 =D:,S’: +4D:&C2 +W:2 +2Di,)t:t: +4@,5,5$ +D:,S”, 

If an undeformable “neutral” plane ([ = 0) exists and the problems of bending and the 
generalized plane-stress state are separable, then pp3 = 0. The roots of the characteristic equation 
(6.2) also fall into two groups, corresponding to the two problems. For the bending problem 
UT = U; = 0 and for the plane problem U: = 0; the substitution CF, = c/, followed by some minor 
algebra, makes it possible to use well known methods [7]. 

Proposition 6. The characteristic equation (6.2) and the characteristic equations for the 
components (A,, AZ) and B, of the reduced operator Do have no real roots. The complex roots form 
conjugate pairs. 

To prove this, consider the expression for the potential energy of the plate. Using asymptotic expansions, we 
obtain 

+ 2q, ,e,, +4,e22 -mlaiwo - 2n?,la;,w, -m,a:w, l@)ffn 

n=i&L:~-~ ( n(“)+e’n(‘)+O(~4)], e,p=%(a,u,p+ apu oa ) 

Substituting (6.1) into (6.3), we obtain a quadratic form 

(6.3) 

Since the energy is positive definite, this implies thatp*(l), pe@‘), p33(5)>0 for CE R. The second part of the 
proposition follows from the fact that all the coefficients of the polynomials are real. Hence the operators are 
elliptic and the problem can be solved with the operator Da by the same methods as in classical plate theory. 

Finally, expressions (6.1) become 

and are sufficiently arbitrary to satisfy the combined boundary conditions on the set Xl. 
Physical considerations dictate that there should be four such conditions, most naturally formulated by 

combining the boundary conditions for the problems of bending and the generalized plane-stress state of the 
plate [5,7-91. The error due to the integral conditions at the ends may depend on the choice of these conditions 
[3], but in isotropic plates, as a rule, it does not exceed 0(e) outside a boundary layer. The detailed 
construction of the boundary layer for a layered plate and its interaction with the internal stresses requires 
special treatment. 
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In conclusion, we present an example in which the representation (6.4) is particularly simple. Consider an 
elliptic layered plate of asymmetric structure with a rigidly clamped contour 

an: f=cx,/c,p +(xz/c2)' - 1 =a, U, =o, W, = anwp =o 

The solution for a constant normal load and linear shear loads 

O* = const, f f * T =7,x, +rlxlr $=cons, 

is 

u,p=q?,a,f’ + q2a2f1. WC0 =u,,f’, u,p~R 

After substitution into Eqs (3.6), we obtain a linear system of fifth-order equations for the constants uuP. If 
the assembly is orthotropic and the semi-axes of the ellipse lie along the principal axes, then u12 = uzl = 0 and 
the number of equations is reduced to three. 

7. In the steady state, the dispersion relation for a monochromatic wave (uO, wo) = (u*, 
u;)exp(iot- iq(X1cos0+x2sin 19)) is determined by the polynomials (6.2) and becomes 

$p*(cosB, sine) &Js = - 
~,p,(cose,sine) 

1. 

2. 

3. 

4. 

5. 
6. 

7. 
8. 

9. 
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